其次,在无线传输技术层面,大规模阵列天线多输入多输出(Massive MIMO)技术以其在频谱效率、能量效率、鲁棒性及可靠性方面巨大的潜在优势,可能成为未来5G通信中具有革命性的技术之一。多天线多输入多输出(MIMO)技术能够充分挖掘空间维度资源,显著提高频谱效率和功率效率,已经成为4G通信系统的关键技术之一。目前的IMT-Advanced(4G)标准采用了基于多天线的MIMO传输技术,利用无线信道的空间信息大幅提高频谱效率。但是现有4G蜂窝网络的8端口多用户MIMO(MU-MIMO)不可能满足频谱效率和能量效率的数量级提升需求。2010年贝尔实验室研究人员提出了大规模阵列天线MIMO技术,通过在基站使用大数量的天线和相应的波束成型技术,不仅能够显著地克服信道衰落和噪声影响,而且能够有效克服同信道干扰问题,从而大幅提升通信系统的频谱和功率效率。大规模阵列天线MIMO技术是 MIMO 技术的扩展和延伸,其基本特征就是在基站侧配置大规模的天线阵列(从几十至几千),利用空分多址(SDMA)原理,同时服务多个用户。理论上,无论是在视距环境的强相关信道,还是富散射下的非相关信道,任意两个用户的信道之间的相关系数随着天线数目的增加成指数形式衰减,比如当基站侧配置有100根天线时,任意两个用户的信道之间相关系数趋近于0,也即是说多用户对应信道之间接近正交。由于大规模天线阵列带来的巨大阵列增益和干扰抑制增益,使得小区总的频谱效率和边缘用户的频谱效率得到了极大的提升。此外,在基站侧的天线阵可以增加无线传输的功率效率,从信息论角度看,当天线数趋于无穷时,对单用户发射功率可以任意小。由于发射端天线数通常远大于用户天线数,其充裕的天线自由度为链路的高鲁棒性和可靠性提供了可能性。
大规模阵列天线MIMO技术相对常规MIMO技术,天线数将增加1~2个数量级,在阵列结构、信道估计、预编码、检测等技术实现上带来的"量变":结构和算法的复杂度呈数量级提高。同时,目前关于大规模阵列天线MIMO的研究都忽略了它在云架构无线接入网的无线传输技术层面可能带来的"质变"。假设阵列天线由128根天线组成,信号带宽100MHz,采用16bits量化和8b/10b编码,则其与基带池链路的数字复合速率将高达786Gbps!如果不对常规的无线传输技术进行变革,即便采用宽带光纤网络基础设施,巨额的光电器件和模块成本将使得这项革命性的技术丧失实际应用的可能性。
提出利用新型的低成本光纤无线融合传输技术革新常规的无线传输技术,把远端ADC/DAC等数字化单元剥离并上移到基带池云机房,通过光纤中多域混合复用技术,如频分复用、波分复用和偏振复用等,用光信号"直接"传输未经数字化的天线待发射或接收到的几十甚至几百路模拟无线信号。实现大规模阵列天线MIMO技术与大规模协作的云架构完美结合的5G无线网络。
系统结构
低成本光纤无线融合传输系统结构如图1所示。
图1. 系统结构示意图