板卡可以有不同的类型,例如36x40G QSFP(用于40-Gig)端口或32x100G QSFP28(用于100-Gig)端口。QSFP (Quad small form pluggable)和QSFP28端口是空的,因此必须分别购买单模或多模收发机或有源光缆(AOC),或双绞电缆。一般规则是,脊交换机上可用端口的数量决定可以连接到脊的叶交换机的数量,从而决定可以连接到网络的最大服务器数量。
接下来,我们将看到监控模块监控和管理整个交换机的操作。电源支持层提供充裕的电力,在脊交换机的背面,我们通常有网络模块,来协调不同线卡之间的流量。在脊交换机的板卡上,均匀分布叶交换机的上行链路连接,减少了通过结构模块的数据量,从而显著提高交换机性能。
这增加了端到端包裹交付时间,也就意味着延迟,并需要采购额外的交叉板卡,而这意味着额外的成本。在接下来的章节中,我们将讨论如何使用布线解决这些问题。
仔细观察叶交换机。当讨论叶交换机时,主要考虑的是上行端口的数量,它决定了可以连接到多少个脊交换机,以及下行端口的数量,它决定了可以连接到叶交换机的主机数量。上行链路端口可以支持40/100G速度,下行链路端口可以根据您计划使用的模块在10G/25G/40G/50G之间进行选择。
扩展具有冗余和线速交换的脊叶网络。让我们考虑一下这种情况。我们有两个脊交换机,每个脊交换机上有四张板卡,但是每个叶交换机上只有四个上行端口。是否可以将这4个上行链路分布在8个板卡中,以保持冗余和线速交换?
如果我们使用40G SR4收发器,我们知道它们实际上是由4x10G SR收发机组成的,一个40G- SR4端口可以被视为四个独立的10G端口。这称为端口分开应用(portbreak-outapplication)。端口分开允许我们扩展和冗余,因为我们扩展网络的方式,传统技术上做不到。例如,可以将2x40G SR4收发器拆分为8 x10G端口,并轻松地将它们分布在8个板卡上。
使用传统端口分开的方法进行交叉连接——为了表示这一点,让我们使用康宁EDGE? 解决方案端口分开模块创建一个10G的交叉连接。我们可以使用EDGE解决方案端口分开模块在脊层端接所有40G QSFP端口。我们可以对叶交换机做同样的处理。现在,我们可以简单地在各自的叶交换机和脊交换机之间做一个LC 跳线连接。通过这样做,我们可以分开所有40G端口,并将它们分布在4个不同的板卡上。
冗余得到保持,这意味着如果你丢失了一个板卡,你只损失了25%的带宽。我们通过确保所有的板卡上都连接了所有的叶交换机来维护线速交换,因此不需要通过垂直架构模块进行通信。每个黄色突出显示的端口代表一个40G QSFP端口。
这是最优的做事方式吗? 不。这被称为使用旧工具构建新网络。
用网格模块交叉连接——有更好的方法吗?
让我们考虑一下网格模块。这个网格模块连接到一侧的脊交换机和另一侧的叶交换机。脊交换机侧端口连接到脊交换机上的单板卡。每次我们在叶交换机侧连接一个叶交换机,它就会自动断开那个端口并将它们在网格模块上的脊交换机端口上重新连接,这些端口已经连接到单独的板卡上了。
我们不需要做任何LC跳线的修补。我们仍然实现了我们在上一个场景中尝试的重新连接,我们有完全的冗余,我们可以从交换机获得完全的性能。
在这个设置中,一个网格模块连接到一侧的脊交换机和另一侧的叶交换机。脊交换机侧端口连接到脊交换机上的单板卡。每当用户连接叶交换机一侧的叶端子交换机时,该端口就会自动断开,并在网格模块上的脊交换机端口之间来回移动——这些端口已经连接到单独的板卡上。不需要LC—LC跳线修补。