光路的切换是通过图6所示的微镜来实现的,微镜被铰链结构连接在基底上,两个拉杆的一端链接微镜,另一端链接一个位移台,位移台被一个刮板式微致动器驱动,把微镜向前拉。微镜在被拉动的过程中发生偏转。
图6. 微镜结构示意图
OMM公司的Li Fan等人于2002年报道了另一种用于矩阵开关的MEMS微镜阵列,如图7所示。
图7. OMM公司的Li Fan等人报道的2D MEMS微镜阵列
基于2D MEMS微镜阵列的矩阵光开关,具有结构简单和易于封装的优势,但是其扩展性有限。从图5中可以看到,对不同的端口链接关系,光路长度差别很大,这将会引入耦合损耗和影响损耗均匀性。对光程差异的容差取决于自由空间光学结构中的光束尺寸,根据式(1),光斑ω0越小则其越发散,根据式(2)得到其准直距离越短。
两根单模光纤SMF之间的耦合情况如图8(a)所示,随着光纤端面之间的间距增大,耦合损耗剧增,两根单模光纤之间的间距,通常限于<20μm。为了增加光纤间距以容许放置各种自由空间光学元件,通常会采用热扩芯(TEC)光纤或者透镜光纤,分别如图8(b)和图8(c)所示。TEC光纤和透镜光纤都能扩大光斑尺寸,以适于自由空间光传输。两根TEC光纤之间的间距可达~10mm,而两根透镜光纤之间的间距可达~50mm。对于一些需要更长自由空间光路的应用领域(比如下文将要提到的3D MEMS光开关),往往需要准直透镜,如图8(d)所示。
图8. 光纤之间的耦合方式
因此我们知道,将TEC光纤或者透镜光纤应用于2D MEMS光开关中,有助于增加自由空间光路长度,以容纳更多的MEMS微镜,实现光开关端口的扩展。然而,允许的最大光斑尺寸受限于微镜的尺寸,而微镜尺寸取决于MEMS设计和工艺。通常要求微镜直径Ф>3ω0(ω0为光斑半径)以反射99%以上的光功率。因此,2D MEMS光开关的最大端口数通常限于32×32。
基于3D MEMS 技术的OXC
为了进一步扩展OXC的端口数,人们开发了3D MEMS光开关。3D MEMS OXC的基本结构如图9所示,它包括两个MEMS微镜阵列和两个二维光纤准直器阵列,每个输入光纤准直器与第一个MEMS芯片中的一个微镜对应,而每个输出光纤准直器与第二个MEMS芯片中的一个微镜对应,MEMS芯片上的所有微镜都能两轴偏转,如图10所示。
图9. NTT实验室开发的3D MEMS OXC的基本结构
图10. MEMS微镜阵列和双轴微镜的扫描电镜SEM照片